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TRANSLATORI'S PRFACE

As -research in dyivm1ical weather prediction proceeds, increasing

attention is Being given to the mathematical problems encountered in

the computation of numerical solutions otf the dynamical equations for-

the atmosphere; the meteorologist's attention is thus drawn to problems

of numerical apalysis. Basic to much of this work are the classical

existence and uniqueness proofs of Courant, Friedrichs and Levy for

elliptio and hyperbolic partial difference equations. The present

translation has been prepared in order to fill the need for an English

version or this paper., 'and thereby to make this fundamental., work wr

readily available and useful to the meteorological profession in"

part co4,ar. After this translation wes completed, however,,my. atten-

tion was drawn to a previous English translation prepared by M. H. Rand

in 1956 at,,th~e .British Atomic Energy' Research Establishment, Harwell.

The Oowaison is in general reasuring, and a number of errors noted

in Randa's translation have here been avoided.

Partio'•//ler oae has been taken in the present translation to

p .reserve the spirit of the original German as olosely as possible# i n

this .. onnection Miss Oberlinder, of the Department. of Meteorology,

U.C.L.A., Wwa contributed significantlyp, as well as assisting in the.

preparation of the final manuacript. The figures have been redrafted

and enlarged to improve their readability, although no other changes

of format have been made

W!. Lawrence Gates
Project Director
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ON TF1E PARTIAL DIFFERENCE EQUATIONS OF MNHEMATTCATL PHYSICS

BY

R. Courant, K. Friedrichs, and H. Lewy

In d0ealing with classical linear differential equations, if

one replaces the differential quotients by difference quotients

defined over some -- let us assume rectangular -- grid, one obtains

algebraic problems of a much more transparent structure. Th4

, following paper will undertake an elementary discussion of these

algebraic problems and. ,iil principally discuss the behavior of the

aolutinn an the reFh width of the grid goes to zero. To these ends

we limit ourselves mainly to the simplest, but nevertheless typical,

cases vhich we handle in such a manner that the applicability of our

methods to more general difference eqations with arbitrarily many

independent variables will be clear.

Corresponding to the familiar problems of differential aqua-

tions, we will treat boundary value and eigenvalue problems or

elliptic difference equations, and the initial value problem for

. .eh, lic or parabolic difference equations. We shall prove with

simple typical examples that the limiting process is always possible,
•"i.e., that the solutions of the difference equatlono converge toward

the solutions of the corresponding differential equations; indeed we

shall find that for elliptic equations in general, the dIfference

;H' quotients of arbitrarily high order tend toward the corresponding

differential quotients. The existence of a solution to the differ-

ential equation is nowhere assumed and indeed we obtain through

I



Lhe limiting process a simple existencv, y-r,.of. 1  BUt while for the

elliptic case convergence is the rule independenti.;y of the choice

of grid, we will show that in the ccse of the initial value problem

for hyperbolic equations convergence can be assumed only when the

ratio of ridl mesh sizes in different directions satisfies certain

inequalities, which L• ,uri are determined by they pr .iiui uf Lnhe

cbaraeteristicon relative to the grid.

We tdke as a typical example of the elliptic case the

boundery value problem of potential theory. The dependence of its

solution on the solution of the corresponding difference equation

has been, moreover, extensively treated during the past few years. 2

Of course, in our case, in contrasb to the previous work, the

particular special properties of the potential eqpation will not

be explicitly used so that the application of our method to other

problems is not overlooked.

Our taeLLiruU 6f proof may be azexteMs WTithout difficulty to
cover the boundary and eigenvalue problems for orbitrary linear
elliptic differential equations, and the initial value problem for
arbitzary li.neax hyer.to4ic differential equatione.

P. J4 le S Sur 1e probl•z da Dirichlet, Journ. da mathe.

• (6) 10 ý2.91l)p p. 189. R. G.D). Riahardaon, w
t toi6Tn 1 oundary Vo"tb2w for Differential Equ~tlons, Trans. Amer.
th. 92.0 16 (1917), pj 48 9 r(. R. B. Jhillips and N. Wiener

and the Diri et Problem, Publ, of thei Mass*. Institute of Technology
(1925), (Translator's note# see J. Math. __ l, e210-5iA (1923)).

Unfortunotely these papers w7r& T--;U7=y the first of the
presrnt three authors (Courant) in the writIng of his note "Zur
Theorie der psrtiellen Diif renznngleichungen", (9ltt. NArEV. 23, X.
19p!5; whinh the Tirenent york exiendn.

Compare fuxthmer L. Lusternik, "aer einige Anvendungen der
direkten Mo'thodann d.n :r Variationsrechnung", laeull 6ie l Societe
Mithe'm. dle Mbncou 1926, G. Bouligand, "Sur 3•.p-•-gRee d Dirichlet",
Ann-. de l.a soc. po].on. de mathem., 4 Krkai., 1926,

For the uf ol' difierence expicarlons, and for related works,
see R. Courant, "Uber direhte Methodeu in der Variatlonsrechnung",
MAPth. Ar-malen, 9', p, '(b. and the literature cated there.
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In addition to Lhe otateCl prilreipal part of the work, we shall

appenck an elementary algebrale Jiscussion of the boundary value problem

for the elliptic equations connectcd with the vell-kno'n problem of

random walks arising in statistics.

1. THE EMLLiT1 C C-*ASK'!

S1. Preliminary Remarks

1 Definitions. In the plane with rectmngular coordinates

P X, we consider first of all a squ re grid of points, of mesh width

h >0 , all points having the coordinates p-ft-C , r"

Now let G be a region of the plane bounded by a continuous

closed curve that is free of double points. Then the corresponding

$rid region G - which is uni•ely determined for sufficiently small

msh width - sh~ii consist of all those grid. points that lii in G and

which can be joined to a fixed. or prescribed grid point of (3 by a

connected series of grid points. We denote a a connected seriae of

.. grid points a sequence of point•u •eu th. *AIo,_ Ploint__ rný* 7 one

* of the four neighboring point. of the following .point,. We denote as

Sa boundary point of .point whose four neigboring points do not

all belong 'to, All other point, of we call interior points.

We shall consider functions U , ... of position in the grid,

S,.e., functions which are defined only for grid points4  We shaLl l1s0

denote them as '4 ( X, V), Lr(X p, .... For their fo6vard and

backward difference quotients we employ the following abbreviations:

kh-
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Correspondingly we form the difference quotients of hi.gber

order, eig.,

"2. Difference Expressions and Green's Transfor•-tions. We

got the Bspimlest general view of linear difference expressions o: :Ahe

second order from the pattern of the theory of partial diforential

equations if we form f rom two functions U and V and their forward

""difference quotients.a bll•near expression

aui~~~ + #ltar V, ++ rv +,kV +Skt + 9V,

are functions in the ••id.

SFrom 'she bilinear expression 9f the first order we derive a

difference expression of the second order in the following way: we

form the sum

I over aUl points of a region in the grid wherein S(t,'V) is setI•



to zero for the differenne quot tent betw.een a boundanry point e.nd a

point that does not belong to G .We now transl'on the sum through

partial sun~ation (i.e., we arrange according to V'), and split it

into a sum-over the set of Interior point.. ak6smoe h
InL u oe h

set of boundary pointsi ' Thus we obtain,

L (i.) isa the linear "1differ.ence express ion of second~ o.rder"l d~efined

for all interior points of G

Ru j.), is a linear di~fference expression for3 every boundary point

whose esaot for~m we shall not. give here.

If we arrange S(L((IV) with respect-to UIA. wet get

M(ir) is called1 the adjoint difference expressi~on of L(0Z4)" we h~ave

X where $(V-) is a differe~nce express ion for the boundary corresponding

The. equations (1), (2) and the following equation

are called Green's:formurlas.. 4h ~rci&~ i)~

ý VI



The simpleot and most imnportant case Occurs if the bilinear

formi is ayaraetric, i.e., if the equations, C (

exist. In this case the expression L (it4) is, identical with its

adjoirit M(v),; we ther'efore call2 it the self-adjoint case, and it

in readily obtainable from the q~uadratic expression

'In tho following we shall limit ourselves mainly to expressions

- -~ _(U.) which are s2f.d1itThe odiharater of the diffe-renee

expression -L.(i4) -depends'.above -all- on- the-rA~tuTe- of -those terms- of

the quadratic form 8B(St, 4. which are quadrat ic in the first d1jf-

frrnlce ajaotients We call, this par't of B5(itk) the Characteristl?
f~fts

form s +

kavordinly. an (1,K U) in (positive) defini~te or indefinite in the.

d~feene ote tse all the corresponding duferenes e*- o- i~ a--

L(~)elliticor -hypsrbo6240 4

The d~flewne exp*ss ion

witha which we. shall. primarily concern -o * vs his thefo-llowing:

paz'agrapha,'is elliptic.. in particular, it is obtained from the

quadvatia expressionk
J!i

+ U +
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He~nce the corresponding Green's fIormulas are-'

The difference expression 44,% as 1 + 19 is obviously the

Janaloguie of' the differential expression O%%/W+ 1 +i/9? for a functiont

K,)'of the eontinuous variables X and V WTIt-ell '011.

completely the difference expression reads-

4A'4 +h~-'X(x 1-th) + 0 4-,04u (x 14 Itr~

there fore f14 is the excess of the arithmetic %mean of. theý

ftnotion values at the four nhighbor'ing poinitq over the ,function

0au at the point in, qA~Ce~iom.

Completely. sinjilar. 4onsiderations lead to lUneear difference

ez2pressions of the fournth order and coozrasponding Green 'e formulas if

___ __ we be6J.n with thi bln r Lfec a esone- which are-- for=4(

fromt the difference q.iotienti of second order. We content oursel.ves.

with the axeIpl of the ifrn.epeio

.AAU+2'14. +1 U -

3 The boundary expression R (UI) may be written here as:floa
I±'fl %to i. t.1 be the function values at' the boundary pointjconcerned and at its .0 neighboring points (q) W 21 then

R~+ +



Thim arises from the quadratic exp~res-sion

if one ordlers the sumi

with respect to %r, or corres~pondingly replaces *K.by the expression

A.in equation (5). One must notice however that in the expression

AIthe function value at a point is5 conunected. with the function

wheordigl s14 ± defie ably ifir'suc poi~rntsof te e regsion, Go2 e ~ch

points ointhero bouIntaystp Of e thgo ug 'ý651e omit -ts more

ofrechpi nts iore, ±depcates by. tG~ We then obtai of 2 fondry m0ira

2. ntr, a*: J ~l 4ismr

point~ ofb th Valu P oblm Tebvrd

precie 1forble $n iniate6r. nl ithis homoge heouse difree bo .unar pntion

second o rdý ' )3i, car,-L e.pchnd b~aa' Q61 bou dryr Ve.um-11roblem'

for partial di~ffýr~ta eqaionb , cdmbe :formil Led a &J~

FL



In a grid region let there be given a seif-adjoint

elliptic linear difference ex-pressionl of the second order L (14.).

It may originatte from a quadratic expression U i ,1) which is

positive definite in the sense that it cannot vanish if, K. x and.

t.thems~elves do tot vanish.

We now determine in GLa f~unction 'U satisfying the difference

eandwich coincides with prescribed values at the boun&sry points of

V this grid region.

Our' requirement is represented by Just as miany linear equatione

and therefore function values that, rex to be determined, as there ar'e

Antarior prid~ points of the grid region.4 "Some of these equations are

homogeneous, tame1.y-P tbcse Lwhich lborrespond to grid. points which, with _

their four' neighbor's, lie in the interior; others, in which boundary

points of the grid.regipp enter,. are nonho mgeneu. f wd set the

.'right-hand, side of the nonhomogeneous system 6,eutos(e.the

.- Gren eqrulaý().tinhasý t L) soluion e w ihen soetar =Value

ýbeaussdf te-psitied ef n bitr~oary diferee of B tion o thereas

rdifer c equati) nhas. aythem soflinau eution s and c.0ithbounsar valuets

trefisposed system of equations, then thstransposed se ai representedI
by 'the, ad Joinit di-fference, equation M (ir) a hu h above self-adjs.ibt difference equation gives rise to a linear e~p.iation system with



at all, by the boundary values, since the difference of two solutions

with the same boundary values must vanish. If, however, a linear

system of equations with just as many unknowns as equations possesses

the property that for vanishing right-hand sides the unknowns them-

selves must also vanish, then the fundamental theorem of the theory

of equations asserts that for an arbitrarily presckibed right-hand

side exactly one solution must exist. In our case there follows at

once the existence of a solut'.on of the boundary value problem.

We see that for our elliptic difference equaticois tne unLque

7 determination and the existence of a solution of the boundaary value

problem are related to one another by the fundamental theorem of the

theory of linear equations, while in the theory of partial differen-

tial equations both facts must be proved by quite different methods.

The basis for this difficulty is to be found in the fact that the

differential equations are no longer equivalent to a finite number

of equations, and so one can na longer depend upon the equality-of

the number of unanowns and equations.

since the difference equationt

AU 0

originates from the positive definite quadratic expression

+

then the boundary value problem of this diffe ence equation is always

uniquely solvable.

The theory for difference eq.ations of higher order) e.g., of

fourth order, is developed entirely j Arallel to that for the difference



equations of second order; fnr vhinh t.he exkrap.le of the difference

equation

ýN 4 0

may be suff.cient. In this case the values of the function 14 in the

boundary strip + (I- must be given. Evidently here also the

difference equation &AU= 0 yields Just as many linear equations'III. as there are unknown function values at the points of G In order.,
to demonstrate the uniqueness of the solution of the boundary value

problem we need only show that a solution which has the value zero in

the boundary strip r P' necessarily vanishes identically. For

this purpose we note that the sum over the corresponding quadratic

expression

(7)

for such a function vanishes, as one may notice by transforming the

sum according to Green's formula (6). The vanishiug of the bum (7),

however, causes the vani.shing of &,g in all points C. and according

to the above proof this can only happen for vanishing boundary values

if the function 4, asaimes, the value zero throughout the region, Thus,

our ausertion is proven and the uniqueness of the solution of the boundary

value problem of the difference expression is guaranteed. 5

5 For a discussion of the solution of our boundary valu, problem
by iterative methods, see, among others, the treatment in: Ober Pand-
wertaufgaben bei partiellen Differenzengleichungen", by R. Courant,
Zeitschr. f. a_ YNathematik u. MeohaiJ ki 6 (19M), pp. 322-325. In
addition on referred to the report of H.-Henky, Zeitschr. f. angew.
Su. Mach. 2 (19202), 58 ff.

II
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2. Relations to Minimum Problems. The above buundary value

problem is related to the following minimum problem: among all

functions 9 ( M, • ) defined in the grid region G • which assume

prescribed values at the boundary points, there is to be found such

a function 4 (=K, - ) for which the sum over the grid region

assumes the smallest possible value. In this case we assume that the

quadratic dif'erence expression of the first order U( 1, 41) is positive

definite in the above sense. (See p. 6,) One may notice that the

difference equation L ( •c)- results from this minimum requirement

as a restriction on the .olution YO U ( X, ), where L ( (e) is the

difference expression of the seCond order derived in the above manner

from B ( ), either by applying the rules of the differential cal-

culus to the mum as a function of a finite number

of values of at the grid points, or similarly, by employing the

usual methods from the calculus of'variations.

By way of example, the. boundary value problem of finding a

tsolution of the, equation ale as 0 which assumes prescribed boundary
values is equivalent to the problem of minimizing the sum I (('1)

over all those ftactions which assume these boundary values.

The situation is entirely similar for difference equations of the,:

fourth order, where again we restrict ourselves to the example of

The boundary value problem corresponding to this difference

equation Is equivalent to the problem of mninimizing the sum~ 61T

5a

Nh
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over all. those functions (0 ( K, 9) which take on the prescr.-I c aLc' s

in the boundary strip . Besides this stun, still other eiprek;ions

which are quadratic in the second derivatives yield the equation

S• =0 under the requirement that they are to be minimized, as

for example the sum

[ •in which there appear second difference quotients exclusively at

points of

That the posed minimum problem always possesses a solution

follows from the theorem that a continuous function of a finite number

of variables (the functional values of 4 at the grid points) must

always have a minimum if this function is bounded from below, and if

it tends to infinity as soon as at least one of the independent

variables tends to infinity.6

10

3. The Green's Panction. Onie can treat the boundary value,

problem of the nonhomogeneous equation L (U )w - similarly to -the

*boundary val.ue problem of the 'cirtigeneous' jaqatiaon L (~)a04 W :It is

sufficient for the case of the nonhomogeneous equatdion to limit oneself1 to the case when the boundary values of U vanish everywhere, since we

obtain the solution for other boundary values by the addition of a
suitable solution of the homogeneous .equation. To solve the ortem of

linear equations which is represented by the bound"-y value problem of

It can easily be verified that theo assumptions for the applica-
r tion of this theorem are valid.
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L(,A)--4 we first choose the funt Ion +( X, k) so that at a grid

point with the coordinates X = t , ý- = i it assumes the value -W•A ,

and at all other grid points assumes the value zero. If K(N ?;t,

is a solution of the special resulting difference equation which wiill

now depend on the parametric point (•,•)and which vanishes at the.:

boundary, then the solution corresponding to an arbitrary function is

represented by the sum

We call the function t.(),.; , ), which depends upon the

points (X, )) and ( , i.), the Green'. function of the difference

expression L ($0). If we denote by •( ,•9;5, i ) the Green's function

of the adjoint expression I•('), then we have the relation

which can be obtained immediately frm Green's formula (5) if one sets

~wW %,i~,t)and Ara2 O~5I) For a. self-adjoint

difference expression there results from the above relation the synaetry

relation

if, 1.upzvRlue Prdblemsý. Belf-adjoint difference expressions

L(U) give rise to eigenvalue problems of the following types Let

there be sought the values of a parameter A-- the igsenvalues -= for

which the difference equation in ,,

L+

L=4)+~

'I!



possesses a solution -- the eigenfunction -- which vanishes on the

boundary

The eigenvalue problem is equivalent to the principal axis

problem of the quadratic form B (k, 4L). There are Just as many eigen-

values •(i), -. , as interior grid points in the region Gk '

and Just as many corresponding eigenfunctions jAJ(t), . , u(S) The

system of eigenfunctions and eigenvalues and their existence results

from the minimum problem:

Among all the functions fo rhich vanish on the boundary

and sat us e -the ortnogonality conditionsie

ian the normalizatieon conditionit

we seek that one gridfor which the sum

assumes the smallest value. The value of the minim=m is the ft•l eign-

value and the function for which it is assumed is the hfth eipenfunation.7

Because of the ot eigenfunction:, iNe.,Vk Ik 0. R! 0 I*•) every grid function X , IJ, .) which vanishes

on tP• boundary can be developed in a ser.ies of 'iigenfunctions in the form

'.where the coefficients ( )are obtained from the equation

..... .... n this way we obtain in particular the following representation
of the Green's function.,•'

K~x, 1; 
1, ,

tkI
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• 3. Relation to the Problem of a Random Walk 8

Our topic is related to the question of probability calcu-

lation, namely the problem of a random walk in a bounded region.9

In a grid region Gb one may imagine the grid lines as paths along

which a particle can move f~rom a point to a neighboring point. In

r • this path - network our particle may now move at random, choosing by

chance at each path junction among the four available directions --

1 8all four are equally probable. The random walk stops as soon as a

boundary point of Gk is reached, where the particle may be absorbed.

We shall ask:

1. What is the probability V'(P; P ) that starting from a

point P one can arrive in some time or other by a random path at a

boundary point R 7

2. What is the mathematical expectation V ( P Q) that by

such a random path starting from P one reaches a point q of G

without first meeting the boundary?

We may consider this probability or the mathematical expectation

more precisely by the follow'ing process. We imagine a unit quantity

of some substance existing at a point P The substance may spread

out *in our path net with a constant velocity, travelling by chance one

grid opace in one time unit. At each grid point exactly a quarter of

Here £ 3 is unnecessary for the discussion of the limiting
process inA 4. .

9 There is an essential difference in the way in which the boun-
daries of the region are introduced in the following consideration and
in well-known methods, such as, for example, those which have been used
in connection with Brownian molecular motion.

t I
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the incom.Lng aubstance shouild flow toward each of the four directions.

The amount of substance which arrives at a boundary point will be held

there. If the source point P is a boundary point, then the entire

p, quantity of substance will remain there.

We interpret in general the probability W(P; R) of reaching

the 'bUu, miA point R by a random walk starting from P without having

before touched the boundary, as the quantity of substance which collects

after an infinite time at this boundary point.

Th probability P.; of ,reaching a pint in exatly
t% steps from point P without touching the boundary, we interpret

as the quantity of substance at point C• after H time units, when P

and are both interior points; if P or ( is a boundary point, then

we set it equal to zero.

The value of E ( P; ) is Just the amount moving in. It steps..,

from, toward Q without meeting the boundary, divided by 4; there-

fore it follows that E P).

By the mathematical expectation Vr( P ; ) for the above mentioned

random walk going once from P to point Q , we mean in. general the

infinite mum of all these probabilities, 1 0

which is therefore for interior points P and Q the sum of all quanti-

ties of substance which have passed the rnlnt n at different moments

We shall prove their convergence shortly.

* I. T

lk- '1
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of time. Therefore the expnectation value 1 will be asnionjed cfor reach-

ing point Q . For boundary values this expectation is equal to zero.

Denoting the quantity arriving at a boundary point R in

exactly n steps by Fh( P; R), the probability w( P, R) is thus

represented by the infinite sum

W(P; R r F; R)

all of whose members are positive, and whose partial sums can never

be greater than one, because the substance arriving at the boundary

will make up only a part ot the original quantity of substance. But

with this the convergence of the series is guaranteed..
SOne 6an easily, see that the probability EfI P ; Q),, i.e., the

I quantity of substance arriving at a point 0 after exactly In steps,

tends toward zero with increasing kI . For if Q is a point from which

Sa boundary point will be reached in exactly "I steps, and if we

have Eh( P , then after hI steps at least the amount

44marrives at this boundary point , but, because of the conver-

gence of the sum F O (P ; R), the quantity of substance
0-.

arriving at the boundary point R tends toward zero with time, and

the value of E ( ; itself must therefore also tend toward zero

with increasing n ; i.e., the probability of an ini'tnitely long path

remaining in the interior is zero.

From this it folj.ows that the whole quantity of substance must

finally arrive at the boundary; in other words, the sum extended over

a& boundary points is

RI
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We still haRvA to prove the convergence of the infinite series

for mathematical expectation Vr( P; Q),

1,=o

For this purpose we notice that the quantities F_ (P;Q)

saftjltf'r the folowing relation

+ +

where aeto a the four neighboring points of the interior

point Q . That is, the quantity of substance arriving after K+ I

steps at point Q is one fourth of the amount of substance reaching

the four neighboring points of Q after n steps. If one of the

neighboring points of Qis a boundary point, e.g., Qj R, the

..there fo2llows that no quantity of substsnoe floms ro this boundary

point to since in-the expression .e have set F- F .; R eqVal to

zero. thermore for an interior point E0 ( P; P). I , ad of

course , 0 (p q)I0 .

From these relations we obtain for the partial.suns

the equations

If.
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if P does not coincide with Q; otherwise we have

*~Z +,1 4 1 (P;()

i.e.) the expectation of a particle coming back to its starting point

is composed of the expectation of reaching the point P again on a non-

disappearing path, namely VhPP)~Pa+r(~)ihPP 4 )1,

and from the expectation:,unity, which expresses the fact that .the whole

substance was originally present at this point.

Therefore the quantities V1, (P; satisfy the following
k

difference equations:,
1 1

o• •v ,,CpQ) = E , PdIQ), ' i ;; T• :;
Here P Q)-is equal to zero if Q is a boundary int.

.1 In this as'.ethe b-operation is related to the variable point .
This equation may be interpreted as a type of-heat conduction

equation. Namely., i f one cons iders the funct ion. VsK P ; )as a fnct ion
of time t which is proportional to n so that t= ui and Vr(P;Q).

1r V( P ;Q;t )= vr(t, ), instead of as a function of the index V% as in
the above representation, we can then write the above equations in the
following form:

- 4'r t+T) "- ý M*Qo

For the limiting process of.a similar difference equation to a parabolic
differential equation see Parb I, S6, 1. 55,

F,
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The solutioA of this boundnry value problem is, as already

demonstrated earlier, uniquely defined for any right-hand side (see

p. 10) and depends continuously on the right-hand side. Now since

the values of E,( P; 9) tend toward zero, therefore the solutions

V •,'( converge toward the solutions I( P;Q) of the difference

euations
i •vAVM, ) = . i; POQ ,

Av(P;Q)= ,: PQ)
K J 4

with the boundary values V ( ; R ) = O.

Therefore we see that the mathematical expectation v( P ; Q)
exists and is nothing more than the Green's function K(P;(Q) belong-

ing to the difference equation A1lu 0, but supplied with the factor

The symmetry of the Green's function K(PsQ)= KN(Q P) isan

Immediate consequence of the symetry of the values,,. 1(P;Q), with

wbose help it was defined.

The probability W( P; R) satisfies, the relation .J

ivwP,; R) I

with respect to W, and therefore also the difference equation

Sic , P2 ,P3 P are the four neighboring points of the
Sinterior point P, therefore each path from P to R must pass through

one of these four pointp, and each of the four path directions is

equally probable. Further, the probability of going from one boundary

,2A



point R to .aother R is zero, (, R)=O, and if the two points

R and R coincide, we have W(•,R)=I . Therefore W( ;R)is the

solution of the boundary value problem AW-O, where the boundary

value 1 is prescribed at the boundary point R and the value 0 is

prescribed at all other points of the boundary. The solution of the

bounday value problem for arbitrary boundary values -U.( R) then bes

simply the form 4( P )mW( P;) Rq(R), which is to be summed

over all boundary points R .. 2 If we here substitute for U the function

t J p ,we thus again obtain the relation V..- U r(f P;R).

The present interpretation of Green's function as expectation.

permits further properties to be immediately recognized. We mention

only the fact that the Green's function increases if one changes from

the region G to one which contains G as a partial region; for then

the .number h of the possible grid paths leading from one point P to

another 9 vithout touching the boundary also increases.

Naturally for more than two independent variables corresponding

relations hold. We satisfy ourselves with the observation that other

"elliptic difference equations permit a similar probability interpreta-

. tion,

If one goae through the limiting process to vanishing meph width,

which is easy to perform by the methods of the following paragraph,

then Green's function for the grid changes to within a numerical factor

12 One can easily seethat the probability w( P ; R ) of reaching

the boundary is the boundary expression R (K• ( P;Q )) written with re-
dpeet to • with the Green's function K ( P;), by identifying u( , j)
in Green's formula (5) with W( P, Q) and v( 9) with v(p,Q).
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to the Green's function of the potential equation;.a similar relation

exists between the expression W"•O;R)and the normal derivative of

Green's function at the boundary of the region. In this way the

Grcen's fDunction of the potential equation, for example, could be

interpreted as the specific mathematical expectation of going from

one point to another wvthout touching the boundary.13

After the limiting process from the grid to the continuum, the

influence of the prescribed grid directions of the random walk vanishes.N]

This fact is of importance when one undertakes the limiting process

with'a more general random walk problem without prescribed directions"

sand is in principle@ an interesting-problem; however it exceeds the

scope of this disoussion, but is one to which we hope to return on ;

another occasion.

4 . Limiting Process to the Solution of the Differential Equation

1. The Bloundary Value Problem of Potential Theory. In carrying

out the limiting process for the solution of the difference equation

problems to the solution of the corresponding differential equations,

we will not seek the greatest possible genere~lity in the formulation,

with respect to the boundary and the boundary values themselvesa, in

order to make the characteristics of our method clearer. Accordingly

13 Thereby the area of a surface is assigned as the expectation of

reaching the surface element.

l. It might be remarked that the extension of our method to more

general boundaries and prescribed boundary values in no way gives rise
to fundamental difficulties.



we assume that a simply connected region G is given in the pluan",

whose boundary consists of a finite number of arcs having continuous

tangents. In a region containing G in its interior let there be

given a continuous ifnction f (xc , 9) having continuous partial

derivatives of first and second order. Fbr the grid domain Gk ,

corresponding to the mesh width 11 and to the region L7. let the

boundary value problem o f the difference eqquation A. = 0 be

II- * solved with the same boundary values which are assumed by the

=nction f (•, •j) at the boundaryp.oints of G ; call this solm-

e tion U x, X ). We wish to prove that with vanishing mesh width

Sthe grid function U k converges toward the solution 'k of the

boundary value problem of the .par~tial differential equiation

I e u ,la+lul o for the region G, where the boundary values

for the region G are sgin provided by those values which the

"function 9 ( •, •) aselimes .on the boundary of G. Furtherm.ore we

shall show that for every region lying entirely in the interior of

G the difference quotients of UA. of arbitrary order converge

uniformly toward the corresponding partial differential quiotienlts

±of the limiting function 1 ( X, ).

In carrying -through the proof of convergence it is convenient

to replace the requirement that ii (X , ) assumes the boundary values

by the following weaker condition: If S is that boundary strip of

ti" reglon G whose points are at a distance leao than t" from the



-25•-

boundary, then the integral

tends tovard zero with decreasing r i'

Our proof of convergence depends upon the fact that for every

subregion G* lying entirely within the interior of the region G ,

the ftuction (, Y ) a•d, every difference quotient remains bounded

with decreasing h and are "equi-continuous" in the following sense:

There exists for each of these functions X, •) a quantity. (4)

dependent only on the region and not on • such that

Ur P).. 7! W P,)P) 6'r

when the grid poqint ý .and. of the grid region G lie. in the given

subregion, and are at a distance less than A (E) from one another,

Once we have proved the asserted equi-continuity then we can

select by known methods a oubso once of our functions U'h in such

"••a way that, together with Its difference quotients of every order, it

converges uniformly in every subregion G* tovard the limiting function

S Note that our weaker bondar y Value requirement actually providaes
the uie characterization of the solution, as follows from a theorem
which is easy to prove: If, for a function satisfying the differential
equation D/U/#*a / U/y2 v0 in the interior of 6, the above form of
the boundary condition is satisfied with 4• ( X i,) w o, and if

Jf(~1/1)+ (2upyif) AXAJ exi~sts, then U (X , )is identically zero.
(See courant, "ber die Losungen der Diff. G1. der Physik", Math. Annalen
S8 especially pp. 296 ff.)

In the case of two independent variables the fact that these bound-
ary values are actually taken on can be concluded from our weaker require-
ment; in the case of more variables one cannot expect the corresponding"'S result in general, because on the boundary there may be exceptional points
at. which boundary values need not be assumed, while for the weaker require-ment a solution still exists.

;1M
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•( i, _Xg) or its differential quotients, respectively. The limnting

function possesses corresponding derivatives of arbitrarily high order

ir, each interior subregion G* of ( ,and there satisfies the partial

differential equation +/)'+ ÷ /y 0 . If we then show that

it satisfies the boundary conditions, we recognize it in the solution

of our boundary value problem for the region G . Since this solution

is uniquely determined then it is further shown that not only a sub-

sequence of the functions U4 but that this sequence of functions

S~itself also possesses the usserted convergence property.

The eqUi-oontinuity of our quantities follows from the demon-

stainof the following results:

i. As I decreases the sums

extended over the grid region k are bounded.16

2.. If W- wk satisfies the difference equation &umO in

a grid region 1.y and if with decreasing • the sum

extended over a grid region G oorsponding to a subregion *

of G is bounded, then for every fixed subregion G lying entirely

in the interior of G* the sum

i+

16 Here and when later convenient we shall drop the subscript 1;
from grid functions.

1I
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extended ov, >: rco vAg r. r.3gion remains bound~ed.

with decreasing h.
Together with 1. it follOws from this that, since all of' the

4'f±rerence quotients W of the function UI satisfy the difference

equation &w %0, each of the stums

is boned

3.From the boundedness of these sums there follows finally

the boundednees and equi-continuity of all the difference quotients

2. Proof of the Lemmas, The proof of theorem 1. follows from-

the fact that the function values U are themselves bounded. Since

the largest and sma3ll.it value of the function will be assumed on the

boundaryl 7 , it therefore tends towa .rd prescribed finite values.* The

boundadzess of'the sum h"Z(U4~.' is an immediate result

.of the minimum property of our grid fuination fozzulated. in 2, 2,'

whereby

('2 u )C

IGk
certainl hods Th su ntergt ovre ih eraigms
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width toward the integral X()* +~ ]d~ which we have

assumed to exist.

In order to prove the lermmas formulated under 2, we consider

the quadratic smi

where the sum is to extend over all interior points of a square

(see Fig. 1). We designate the function values on the outer boundary

of the square Q, by V,,, those on the second boundary line 5* by Vro.

OThen _ __

IZI

Fig. 1.

Green's cormua thel2ds:! ~ ~ 8

where the ailm tion on the right is to extend over the two outerboundary lines $, and , nd where W, and, W. refer to neighborin, g

Sponts. We now consider, aset of cooncetri0ý squres Q., QZ,<•.
wit boudaie. each of which arises

, Nwt onais r ,• s ",S

N½
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from the previous one in such a way that the border of nearest

neighboring points is added. (See Fig. 1.) To each of these squares

we apply the appraisal (8) and notice that

holds for k $ I ' If we add the eer-ee of hj nelqtua1itiPe

SsASk
we obtain

This inequality we sum from ttm I to n'. N One thus obtains

N'L 2. , 2 2

in which the sum on the right extends over the entire square

By reduction bf the mesh width we now lot the squares Q* and

tend towad two fixed concentric aquares lying in the interior

f Gnd a'diutaho t apart, so that' N converges toward a. nd
we find that

holds independently of the mesh width.

This inequality -- for sufficiently small mesh width -- holds

Sof course not only for the two squares Q0 and b., but, with

another constant O , for any two subregions of G such that one is



-30-

contained entirely within the other. Therefore the theorem of 2. is

proved.18

In order to prove the third result, that in each interior sub-

region the function U and all of its difference gotients V

remain bounded and equi-continuous with the refinement of the mesh

width, we consider a rectangle R with corner points Po , Q, P, Q

(see Fig. 2), -whose sidaG are Parallel to thl X-axia

and have the length OL.

p.PO P,. __

6 Q,

Fig. 2

We start with the relation

urt + Ow

and with the Inequality which follows directly

18 If we do not assume tnat 0w':O, then in place of the inequality
(9) we find

for suitable constants C1 and CZ independent of k, and where G
lies entirely in the interior of the region G*', which in turn is con-
tained in the interior of G.

.'I
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We then let the side P of the rectangle vary between an initial line

P, Q Ia distance b from POQ 0 and a final line P2 Q a distance

2b from P0QO, and we sum the corresponding + I) inequalities (ii).

Thus we obtain the result

in which we extend the sumnmation over the entire rectangle IRI

PO Q O f IQ From Schwarz's inequality there follows

Sb % RX.

Since by ajuJ•fiUA the ums which occur here multiplied by •

remain bounded, it follows that the difference 'w( P* )- w Q.)

,tends to zero with the distwma e a, independently of the mesh size

since we can fix for each subregion G* of G . The equi-continuity

of Wo in the -direction is thus proved. Correspondingly one

may prove the same for the a- -direction, and hence for each interior

subregion G* Of . The boundedness of the function W, in 6*Sfollows finally from its equi-continuity and from the boundedness of

•A

. .With this proof one then assures the existence of a subsequence

of functiono 1 which converges toward a limiting function 14.( V '), .,

and which does so uniformly together with all its difference quotients

in the sense discussed above for every interior subregion of G. Thin

limiting function 1k )K, 9 has continuous partial differential quotients

4-
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of arbitrury order throughout G , and there satisfies the partial

differential equation of the potential

-+

3. The Boundary Condition. To prove that the solution satis-

fies the previously stated boundary condition, we next show that for

every grid function V we have the inequality

S14

where Zh designates that part of the grid regionG which lies

inside a boundary strip S. This boundary strip S (see p. 25)

consists of all points of G whose distance from the' boundary is less

-than 1 it is confined between r and a curve * Furthermore A

and B are constants .dependent only on the region 6, and not on the

mesh size k nor on the f'unction 'V.

ax

Fig. 3. Fig. 4.

#
[I
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In order to prove the above inequality we divide the boundary

r of G into a finite number of sections, for which the angle between

the tangent and either the X -axis or the Y -axis stays above some

positive value (such as 300). In illustration let r be such a section

of,:r which is rather steeply inclined to the X -axis. (See Fig. h.)

Lines parallel to the X -axis intersecting the end points of the

section I will cut a section from the neighboring curve P ,

and will define together with • and j a region 3 of the boundary
strip p," Thatpart of the grid region which is contained ±n

the strip St is called S, , and the corresponding part of the

boundary rk is called

We now imagine that a line parallel to the )(-axis is drawn

ugh a grid point of s This line will hit the boundary

at a point P. That particular section of this line which lies

in k we shall call Certainly the section will have a

length smaller than Cr, since r, is the largest perpendicular dis-

tance of a point on . from r. Thus the constant C depends only

on the smallest angle which the tangent, to • makes with the X -axis.

The following relation holds between the values of 17 at the

"point a .nd its value at the point

'1'ph)=tr ± V X

from, which, by squaring and using Schwarz's inequality, one finds

+ .



-34-

By summing wLth respect to i in the X -direction we obtain

Summing once more in the i-direction yields the relation

St. St.
and in order to find the desired inequality (i3) from ihlts uze needs

only to set up the corresponding expression for the other parts r of

, and then to add the two expressions.19

We next set

VV k
so that vanishes on the boundary Pk Then, since (Vi. + j)

* remains bounded for d.creasing wi, We find from (13)

'€' x tr_. Kr(1
Swhere X is a constant independent of both the function Vt and the

"mesh width. If we extend the suanation on the left hand side not

over the entire boundary strip 6 ,'h but rather over the difference

Of two such strips S,h- , , then the inequality (16) is still

valid with the same constantj X and ýwe can carry out, L'_-4 lmiting

process for vanishing mesh width. From the Inequality (16), there

19 The same sort of considerations "which led to the proof of the
inequality (13) also yields the inequality

where the constants C1 and C. depend only on the region G and
not on the mesh width.

-. 4-



then results

1( rLS K r V V _ z

If we now let the smaller boundary strip S approach the boundary,

then we find the following inequality:

St. 4,.

which just states that the limiting function 14 satisfies the boundary

conditions which we have specified.

4. Applicability of the Method to other Problems. Our method

is essentially based on the inequality (10) stated in the above lemma, 2 0

because from it the last two theorems of pages 26-7 follow. Inequality

(10) in no way makes use of special solutions or other special proper-

ties of our difference expressions, and may therefore be imediately

extended to the case of arbitrarily many independent variables, or to

the eigenvalue problem of the differential equation

+ U0 0, and we thereby obtain exactly the same results concerning

convergence properties above#21 With some modifications which are

easily made the method can be extended to-linear differential equations

of other sorts, particularly to those with non-constant coefficients.

The essential distinction consists only in the proofs of the boundedriess

20 Concerning the application of correoponding integral inequali-

ties, see K. Friedrichs, "Die Rand- und Eigenwertprobleme aus der
Theorie der elastischen Platten", Math. A 0, p. 222.

21 It is thus proved at the same time that each solution of such
a differential equation has derivatives of all orders.

I
I
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of {"I I-e q Indeed, this sum is not bounded some for linear

problems of this type. But when this sum is unbounded, it can in

fact be shown that the general boundary value problem for the, differen-

tial equation concerned has no solution, and that therefore in this

case non-vanishing solutions of the associated homogeneous problem,

i.e., eigen-Vanctions, exist. 2 2

5. The Boundary Value Problem of AA i 0. In order to show

that the method can also be applied in the case of differential equa-

tions of higher order,, we consider in the following the boundary value

problem or the difrerential equation

__+ 2- + - 0

We seek a solution of this partial differential equation in

our region G, for which the function values and their first deriva-

tives are prescribed on the boundary; these values are themselves

defined on the boundary by a previously given function 9 (x,

In this case we assume as before (p. 214) that. (x, I ) is continuous

with first and second derivatives In the plane region which containis

the region I.

We replace our differential equation with the problem of

solving the difference equation UA a 0 for the grid region G

22 See Courant-Hilbert, Methoden der matheatisc Phyen , 1,

Chap. II, 3, where the theory of irnt; l equations is ad ssa
with the aid of a corresponding alternative principle. See also the

S-Ghttingen dissertation of. W. v, Koppenfels (to appear).

&I
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.herc thc function '&t assu-,ies the 8wme vulues as the previously given

X(x ,9 ) at the points of the boundary, line .+ V From f 2 we

know that the boundary value problem for G h is solvable in one and only

one way. With therefinement of the mesh width 6 we shall show that in

each interior sub-region of G this solution converges toward the solution

of ouj diffferential equationx with all difference quotients approaching

their respective differential quotients...

For this purpose we first notice that for the solution 14t = of

our difference problem theL sum

is bounded with decreasing mesh width. For according to the minimum

property of the solution of our difference problem (see p. 12), this sum

is never larger than the corresponding sum

and this is convergent with the refinement of the mesh viot•h toward the

integral
IL t

which exists according to our assumptions.

From the boundedness of the sum

thaem imediately follows the boundedness of kt 6 as WEI

as of fU, + U and k2 I Fr arbitrary

'I

1
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W there exists the inequality

W, '3ry-(Ur'tWV + a(15)G•e k rk

(see (15) p. 34). If one substitutes the first difference quotients of

W into this inequality for the function W, and makes use of the sub-

regions of C' k which are defined with these difference quotients, there

results the additional inequality

where the constant C again does not depend upon the function or the mesh

width. We now apply these inequalities with kLF x Uand recall in this

case the boundedness of the sums over rk + P on the right hand side;

the boundary sums converge by definition toward the corresponding

integrals formed with ( (g , ). jTherefore from the boimdednems of

P. + It 1 1 4,;)um

there follows the boundiedness of

We now substitute successively for • the expressions 6 AUX ,

dAug X , .. in. the inequality

(see P- 30), where G* is a subregion of G containing G* in Its interior,

all of whiuh satisfy, the equation AW O. It then follows that for all

interior subregions $~of (, the sums

O , S +



are bounded, together with the sums

which have previously been shown to be bounded.

Finally we substitute successively for 6W the funict ions. At

14 X U j$ UXXXin the inequality (10),

which remain bounded as just piroved. We then recognize that for all

subregions the sums

also remain bounded.

From this fact we conclude as on pp. 30 ff. that we may choose a

partial sequevce from our set of gifuconfrwhhall difference

quotients converge uniformly in each interior subregion of Qtoward a.

continuous limiting function in the Interior of Gwhich are their

Ilrespective differential quotients.1

We still have to show that this limiting function, which obviously

satisfics the differential equation dl6"60, in addition fulfills the

prescribed boundary conditions. In this case we satisfy ourselves as
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above by exprea'ing the boundary conditions in the form23

That the limiting function satisfies these conditions may be shown by

applying the same procedure used previously on p. 34 for the function

U &d its first difference quotients.

On account of the unique determination of the solution in our

boundary value problem, we can now recognize in addition that the indi-

cated convergence properties are possessed not only by the selected

partial sequence but the function sequence 14 itself.

II. TE HYPEER1OLIC CASE

5 1. The Equation of the Vibrting String

In this second part of the article we are concerned with initial

value problems of hyperbolic linear differential equations* and we shall

show that under certain assumptions the solutions of the corresponding

difference equations converge toward the solutions of the &ifferential

:equation during, refinement of the mesh width of a basic grid.

We can most simply demonstrate the present relations with the

obvious example of the wave equation

In this case we restrict ourselves to the initial value problem in *1
2 - JIt is not difficult t show that boundary values for the function
and its derivatives are sufficient. See the corresponding observationsby X. •rieadrihs, 0.c, cit.

"FF



which the values of the function U and its derivatives on the straight

line ,=0 are gl.ven.

To obtain the corresponding difference equation we construct a

uniform square grid of mesh width k in the X, t -plane. We substitute

for the differential equation (1) the difference equation

X-0

with the notations of pp. 3 -4. If we choose a grid point PO , the

difference equation in this case connects the value of the function 1A

at this point with the values at the four neighboring points. If we

again denote the four neighboring values by the four indices 1, 2, 3, 4

(see fig. 5), the difference equation takes the simple form

In this case the value of the function U at the point P itself does

not appear in the equation.

We imagine the grid to be divided into two different partial

grids, as indicated in fig. 5 with cireles and crosses. The differenae

equation then connects with one another only the values of the fumction

0 + 0o+ A

Fig 5 Fi. 6 a

o5 + 0 + * * a

.+Fig. 5 Fig. 6



in each of the partial grids. We therefore restrict ourselves to one

of these two partial grids. As initial conditions we have here to

prescribe the values of the function U on the two grid rows t and

tz t . Next we state explicitly the solution of this initial value

problem; i.e., we express the value of the solution at some point S in

terms of the specified values on the two InItIal rovw. One can immeedi•

ately see that the value at a point on the row t h is uniquely

defined, merely through the three values connected with it on the first

two rows. The value at a point on the fourth row is uniquely defined

by the value of the solution at three fixed points of the second and

V third rows, and therefore by certain values on the first two rows. In

general, a certain domain of dependence on the first two rows will belong

to a point S ; one can find it by drawing the line6 X+t * const' and

X-t donst. through the point -, until they meet the second row in

the points a( and • (see fig..6). We thus call the triangle 09 'the

determination triangle, because within it a.U U -values do not change

as soon as they are-specified on the first two rows. We call the lateral

lines of the triangle determination lines.

Denoting now the differences of V, along the determination lines

1by 'IL and VU, or more precisely

the difference equation takes the form

/ 1 1

I



This means that along a determination line. the differences in the other

determination direction are constant, and therefore equal to one of the

predetermined differences between two points of the first two rows. On

the other hand, the difference IA, -4 is a sum over the differences

ý14 along the determination line $o( , so that we obtain, by application

of the prevvouae remark, the final formul--

1A . +f (3)'S I

in which the notation is easily understood.

7i....y Now we let the mesh width k tend toward zero, whereby the pre-

viously mentioned values on the second or first row converge uniformly

toward a twice continuously differentiable function • ( ), and the

difference quotients tend toward a continuous differentiable

function 9 ( X). In this cate the right side of (3) obviously transforms

uniformly to the expression

if converges toward the point ( x, This it the well know expres-'

slion of the solution of the wave equation (1) with the initial values

1L(X,9)(K and +'tX.~ (X) +V-2 K) Ithis

therefore shown that the solutions of .our difference equation problem

converge toward the solution of the diffe•rential equation problem with

decreasing mesh width, if we let the initial values converge in the above

prescribed manner.

I
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2. On the Influence of the Selection of the Grid

The Regions of Dependence for Difference and Differential E.uation

The following thoughts are obvious in view of the considerations

of 1• . Just as only a certain part of the initial values are decisive

for the solution of a linear hyperbolic differential equation at a point

S, namely that "region Of nu Out out by aIc h .eraLeraLics througn

S, there is likewise in the solution of a difference equation at the

point S a certain dependence region which one obtains by drawing the

determination lines from point $ . In 5 1 the directions of the determi-

nation lines of the difference equation coincided with the directions of

the characteristics of the differential equationp so that the dependence

regions also agree in the limit. This fact, however, depended essentially
F

upon the orientation of the grid in the ,)-lane and was based on

the fact that we had chosen a equare grid. We now take as a basis a

general rectangular grid whose aesh width in the • -direction (time-csh)

equals I and in the X -direction (space-mesh) is equal to •h with

constant, . The region of dependence of the differenoe.equation

-0 for this grid will be aompletely in the interior of

the region of dependence of the differential equation XM /)t' g• P'= 0,

"I or will contain the latter in its interior, according as - X 1I or X I .

JFrom this follows a remarkable fact: In the cane M6 < 1 as the

mesh width k decreases toward zero, the solution of the difference aqua-

tion cannot converge in general toward the solution of the differential
F_• equation. For if in the wave equation (1), one changes the initial values

iI

I
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S~of the solution of the differential equation in the neighborhood of the

S~end p0oints o• and of the region ofdependence (see flig. 7), formla

(4) shows that the solution itself also ohanges at the point (X t ).

But for the solutions oftlte difference equation at the point S the

ftinitial values at the points V( and are irrelevant, because they-are

IFSoutside of the region of dopendence of the difference equation. -- We .

shall prove that there is convergence in the case X >I in in. In

this connection see fig. 9,, p. 46.

On the other hand, consider as an ezample the differential equation

in the spatial coordiAates X, • and the time coordinate t, and replace

it by the-corresponding difference equations in a rectangular grid. In

contrast to the case of only two independent variables, it is now impos-

vible to choose the Msah spacing so that the regions of dependence of the

• diffeeence and differential equations coincide, for the region of dependence

4-

I 7er-1-I



of the difference equation Is a rectangle, -while that of the differential

equation is a circle. Later we shall select (see § 4) the mesh spacing

so that the region of influence of the difference equation contains the

region of influence of the differential equation in its interior, and we

shall Fhow that convergence then occurs.

In general the principal result of this section is that one ean

choose the grid for each linear hyperbolic homogeneous differential equa-

tion of second order such that the solution of the difference equation

converges toward the solution of the differential equation as the mesh

width tends toward zero. (.In this connection see 3o 4P I4 7, 8.)

3 5. The Passage to the Limit for Axbitrary Rectangular Grids

Next now again consider the wave equation

and xeleat a rectangular grid whose time mesh width is. and whose

*pace mesh is X • The corresponding difference equation is

where the indices denote the central point , and the corners pa,

P+ of an.,lwtr hmu"(sm i. Acrl t h

A

• 'l %S0
"4oZ"4 a• . .

p%

Fig. 8 Fig. 9

~Il



eqlation L(u)= 0 we are able to describe the value of the function 1

at a point • in terms of its values on that portion of the two rows

t'1.0 and t = 6 , (see fig. 6, p. I4) obtained by drawing the two

"determination lines" from the point 5 to the sides of an elementary

rhombus. We assume the initial values are prescribed such that they,

and the first difference quotients formed from them, converge uniformly

with decreasing mesh width and with fixed X toward the continuous

prescribed functions on the straight line t - o . It is possible to

write an explicit solution of the differenoe equation in terms of the

Initial values (corresponding to (3) ini 1); but it is not so simple

to perform immediately the limiting transition to vanishing mesh width.

We therefore follow another course, which will ,still enable ue to treat

the general problem.2'
We multiply the difference expression L(t) by ( - () &n

write the product under consideration according to the following

i ~~identies -

-US U (7)

R~U.

I "

24 In th followin compare K. Friedrioha and ~.Lewy, "t•ber die
S ..... , indeutigkeit u.s.w .", $ath. .Ainlen, 98, (19a8), pp. 192 fi'., where
• + ~the analogous trmfratos o inerals are used.

1 ..... + C
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We thus obtain

Z~ut4,L(u) = i(vk%)l(1A, 140) (U 0 -Uq) 1

2

Noiw wP AIuM the PvordAct (9) over ell element-VY rhombi of a dctcr;-

mination triangle $ $ . On the right side of (9) the sq8ares of the

differences in two adjacent elementary rhombi always appear with

different sigs. They drop out in the summation when both elementary

rhombi belong to the triangle SO • therefore only one sum remains on

the boundary of the triangle. In this way we obtain the relation

LN 2 [2( k)1
h k k

•Raere It and U denote differences along determination directions as in

1, i while 4A' _,ýotes 'the difference Of theL inction values at two-

neighboring points connected by a line parallel to the t -axis. The sums

are to extend over all boumdary lines consintIng of t+'rc p rows, so

-Therefore'the right side of (10) disappears for a solution of

L(41.)= •The sum which occurs over the initial rows I and II remains

bounded if we allow the mesh width k (with hixed X ) to decrease toward

2 t
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zero; in Particular it transfnm.s int.o an integral of the given Aimction

on the initial line. Consequently the sums over S•r and t in (10)

also remain bounded. It is now that we must require > | , (see page 414)

so that I - is non-negative and the boundedness of the individual sums

follows which we can imagine to extend over arbitrary determination lines.

From this we can derive the "equi-continuity" of a sequence of the

grid fun-,tions in all directions of the plane (see first part of j 4);25

because the values of U are bounded on the initial line, there follows

the existence of a partial sequence which converges uniformly toward a

limiting function 14( X,)

In addition to the fvnction U4, its first and second difference

quotients also satisfy the difference equation L (U):• . The initial

values of these difference quotients are expressed by means of the equa-

tion L (.u )u 0 by the first, second sad third difference quotients of 14

in which only points on the tWo initial rove; a nd 11 appear. We require

that they tend toward continuous limiting functions, i.e., that the given

initial values I K, 0 ), +(XK,O0 are conitinuous, and can bOe d±Xfferen- ý

tiated three and two times with respect to X respectively.

L 25, if S, and SIL are two points separated by the distance * and
"if one connects them with a path formed by two lines S, S and S a ,
the first of which is parallel toone determination direction and the
second is parallel to the other, then there results the relation

.4s +2

f Y +
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We can now apply the above convergence properties to the first and

second diiference quotients of I4 instead, of to UA itself, and we can

therefore choose a partial sequence such that these difference quotients

tend uniformly toward functions which must then be the first or second

derivatives of the limiting function U (X ,). The limiting function IA
2%,k 2

.consequently satisfies the differential equation - "

which corresponds to the difference equation L ( u) 0 it thus describes

the solution of the initial value problem. Simce this solution is uniquely

determined, each partial sequence of the grid function and therefore the

sequence itself converges toward the limiting function'.

S4. The Wave Equation in Three Variables

We now consider the wave equation

and extend the remarks made in 2 2 in connection with the region of

dependence. The region of dependence of the differential equation (11)

is the circular cone with ite axis parallel to the t -direction and

vertex angle ,with +A A In a rectangular gid we accord-

ingly apply tbe difference equation

Through this equation the Pnction values 44 are connected with each

other by the points of an "elementary octahedron". It allows the function

value at a point S to be. uni-:Viely expressed by the. funotion values at

certain points of the two initial planes +O and tz I . We obtain

I



for each point S a determination pyramid which cuts two rhombi from the

two base planes as a domain of dependence.

If we let the mesh width tend toward zero with retention of its

paoportions we can then expect convergence of the sequence of grid fanc-

;tions toward the solution of the differential equation only when the

determination pyramid contains the determination cone of the differential

equation. in Its interior. The simplest grid with this property will be

the one which is placed such theat the determination pyramid touches the

determintion cone from the outside. Our differentlal equatint is

chosen such that this occurs for a cuoic rectangular grid.

Z •In this grid the difference equation (12) assumes the following

form in the notatione of figure 10:

here, moreover, the function value V. at the middle point P no longer

enters. The v,%luen of the solution on the two initial planes are the

values of a continuous function, four-times dirrerentiable with respect

to X .ut

.. For the proof of convergence we again use the method developed

in 5 , forming for the solution of our difference equation the triple

which. extends over all octfLh idral elementg of the determination pyramid

lmanating from a pr ont W !e reviize on the basis of an almost

filiteral interprn ,Ition of t-'ie previous conclusion that the values of the



-52-

tA

I

Fig. 10

Iumction .4 at the Interior points of the determination pyramid drop

out, and that only surface sums remain ovr the four lateral double

surfaces F and over the two initial planes 1, II of the pyramid.
Denoting by 14 the difference between function values at two

points which are connected by an edge of an octahe~zrsl element, there

results the formula

which is to be siumaed over all planes containing the differences so ,

that each such difference appears only once.2 6 Since the double sum

26 The grid is chosen such that the difference of S& between the two
planes r no longer occurs.



remains hir-r-nded over the two initial planes, as it transforms into an

integral ovi-er 1nitial value8, the sum therefore also remains bounded

over the 'deete-mination planes" F

Inlteea& of to U4, itself, let us turn our attention again to the

IC,:• first, sesr0rd end third difference quotientB which satisfy the difference

equation (17 3) mnd their initial values; the initial values are themselves

expressed",ý'yaeans of (13) bythe first through fourth difference quo-

tients fometd Xrom the valu•s on the first two initial planes. If

Ltrm Xh It one 6f these difference quotients up to the third order, we

then knoutK hat the sum • (- reman ins"nbiein ivp.wr onn

determinstlcUon 3plane F - By exactly the same consideration which we

applied Io-the first part of 4 ,. it follows that the function U and

its firstarxzmi zecond difference quotiants are equi-continuous. Therefore

there exia-.sa sequence of mesh'vidths whioh decreases toward 2ero such

that. thou a e xesseions, which are bounded in the beginning, converge

toward caiL-•lo-cus limiting functions, asd indeed obviously converge

toward ta m 8o•tion of the differential 6quation including its first and

sec0ond dertw--at~Ives, ,. which follows exactly as in I

=

04-. ...

'"•:x•• I



APPENDIX

SUPPIM4ENT S AND GENERALIZATIONS

5. Example of a Differential Equation of the First Order

We have peen in 1 2 that under sorie circumstances the domain of

denn~.ndne nf' the differential eauation constitutes only a part of the

domain of dependence of the difference equation, and therefore the

influence of the remaining region drops out in the limit. We can expli-

citly demonstrate this phenomenon with the example of the first order

differential equation k/' =O if we substitute for it the difference

equation

Written in the totation. of fig. 5 (p. hl) it reads

U*S # U 4
•, = • + 4 .(•6)

This difference equation again connects only the points of a partia i.

grid with one another. The initial value problem consists of specifyeing

the function U, as the values whi* ction X)

assumes at the points XK m 1k on the row 0

Consider the point S on the t -axis at a.distance h . It in

easy to verify the representation of the solution 1 at as8

The sum on the right side tendo tovard the valu •e with refinement of I
the mesh width, i.e., as ht-o- , One can conclude this from the conti-

nuity of 9( ) and the behavior of the binomial coefficients with

increasing t%. (See the following paragraph,)

• ' '. I
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§ 6. The Equation oLf Heat Conduction

The difference equation (16) of § 5 may also be considered an

analogue of a quite different equation, namely the equation of heat

conduct ion

2_ -- (18)

In any rectangular grid the correaponding difference equation reads

where t is the time mesh and j tie space mesh. In the limit of

vanishing mesh width the differencm equation maintains its form only

when . decrýasee in proportion to 6 In particular, if wo Aet

1, u the value UO then d rops out of the equation and there result*,,

the difference equation

whose solution has been given by fcotula (17):

, "• 1 .f.

A point . of the, X -axis is; alvays denoted wth dereas ink mesh

width by the index

L ¶ (20)

The mesh width is related to the odnate -•of the source point by the

pr equation

We shall now examine what rs sults from formala (17) when I tends

toward, zero, i.e., as I, tends to0-ard infinity. By application of

I,
______________________



formula (21) we may write equation (17) in the form

For the coefficients of ,2k4 2; X ( we use the abbrevi-

ation

Here we shall calculate the limit of this coefficient, which one usually

Sdetermines w-th the aid of 7tirl~g'a formla, by interpretinr the

Nnsfunction t as a Wtd ove " ýtncno n of rdinary differtnce eeuatione

Sand proceeding to the limit for vanishing mesh width and thus to the

equation, which in the limit as K-..0 occupies the wle. X -axis.

One narn see by simp•le aonsidmerations that 9g ( •) converges

uniformly toward the solution • (X) of the differential equation

.'Cx) 9 0 +

with the auxiliary condition

9kxltx

Tt.o

eqain hc ntelmtin 0Ocpe h hl xs
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By proceeding to the limit there then arises from formula (22)

a~ ~ ~ ý ( )- ---- e 1 /2t ) •
u.(o,*) 5

the well-known solution of the equation of heat c oduction.

The considerations of this paragraph are directly applicable to

the case of the differential equation

PIP etc. in more independent variables.

9 7. The General Linear Homogenous Differentlal Equation

k ,i •'of Second Order in the Plane

Let us consider the differential equation

k'- +- + f + (23)1 *L - xV+ =o ". A)

The coefficients are" tvica continuously differentiable with respect to

* ,while the initial values ~n the straight line t 0are, three

times continuoously differentiable with respect to X . We replace the

4ifferential. equation by the dlfferenom equation

•: such that in the neighborhood of that. pert of the initial lirne ±imder

oonsideration i- .• )"0 holds for our constant g ; we choose the

2_•! ' •,intil ,,,i,,es as in 5 ). (see p. 149.)F

in agditr the tonvergence proof we again traneform the sum wv

;2 ''

ouhta ntenihoho ftatpr-fteiiill Ud

cosdea;Lo odsfrouostn -. hos h



by application of the identities (7), (8). Tn addition to the sum (see

(10)) over the boundary of the triangle So(t (see fig. 6) there now

appears a sum over the whole triangle So(* , whose absolute value can

be estimated with the help of the Schwarz inequality as

where the constant C does not deptd on the function U, on the mash

width , or on the point in 6 neitain neighborhood of the initial

line.

Here we can similarly estimate the value of

+ U

where what haes been said~ for C will be valid for the constants C L,C,27.

We thus obtain an inesa~lity of the form

k + (

wt~e• C) is a fixed constant fo!' aU. the swam over the inti~l utwaigbb , ....

• ~~~~Line, for• el .point U ,anmesh w•%d.h .a ....

" $ta~rting from the intial line we nov choose a the point U or

I •- ~paratlel. to the t -axis. By smtm•ion of the inequal.itieu correapondin6

•,•'•!'27 1For the p•roof, see the related ine quality at the bottom of p. 19.

o&

+ +k



-59-

to (25) we obtain the Inequal.ity

F •- ,,< .k 3 [('I- ) ) t J

SR~eoall~ng that one can e•cpress the df±ti'renc.•e t4 or U I~n tez'sm o? the !

•.:• two differenoeu IL and a dilferenoe 14 or '14, x'eapectl.velyj it oll.ows '

•:• that ye can then reduce the left side of (26) if we sububttute for it

•: ~We now restrict ouraelvep- "o a ne~ghbowhbood t. • hI of the initial lUne

Kk C -+k = D

An-FRecai t hat *le one oa expb ress thediffere ore 91i e• i- ome of tO, it

is a ytto b he fdroe w nc her o•do fference o qurescntively, ofl4l as.e

gwe

S,--AI

rR



satisfy difference equations whose second-order terms are asa in (24f).

In the additional terms derivatives of U4 which cannot be expressed by

canl indeed still occur, but the sum of thei~r squares over a rectangular

area multiplied by can already be assumed to be bounded. But in

this oase we may apply to this difference equation for WV thAe sawe con-

alusions which have been applied earlier to 4&. Therefore, we can infer

the equi-oontinuity and bo'uxdedziess of the functiofls 14 and their first

an scod ervaivswhich therefore possess a partial nequence vhich

converges trniformly toward the sol~vtlon of -the initial. value problem of

the differential. equation. ftm thea unioueness, it spidn follows that the

funqtion, seuence21 Itself con'Vergesu .

, T I this case of course we must assume that tVe difference quotlents

up to te third ordert converse un'iforsely toward aontumain~ limitins

fundtionsep on and between the initial rows .

9.Thi Initialathin. Problem of an A.rbitrarwy 4pewolic

Line*ar Differmti 4qa~tion .of Geco#4 order

MO shall. ow show that the .methods developed abov aro, adequatd,

t*;, $*IV* the-initial value roblem of An a,ýrbitrary iinetr-bcoWeODOR

b11erb0OXli 6rf±eroutilaX equation- of 8*e0o14 order.. li this Oeas it is

Outficient -to rustrict, ourselvves to th~e case 6f' three variables, -The

.,#*ft of hohtmy bOe Inedistely applied to several výwable, One

can easily ice that the most .,general problem of thig. kind aim be reduced

This assumption, \and those concerning the differentit''i2.ity of
the coeffIcients of the. 'differential. equation and the boundedness in a
sufficienitly small neighbrhood of the initial lines,, can- be relaxed In
particular cases.



by a transformation of variables to the foliowing: to find a function

14(X,, t )which satisf'ies the differential. equiation

~~x (qq)+~*~4M 4-OUx (20)

a~nd which, with ML J±rst-dErivatives, missiume prtborlbed valu~eb on the

plane t@ so In this fiase the coefficients may be funotions of the

variables PA,~ n1 should satiafy tbc conditions

We also assume t-bAt the coetfi1mntis ane thre: timua Cotiously
spitt to and tbhet th Uitialv.

on four times 4Ifferttiable mnd44 thre tuft#~ &iferentiable viLth

J Speeet, to x I

We now am3e-th coordinates, X a" ¶ ariýrattaod, o pomda lt

4 ~In~ the i14"411 plab1e voh that bs0 anin a cot.inn iiaboz'Jaoo4

of this polint the. conditions

Y teI C ~hOE ~tbg" tIUh3 CoQItswuslJ57dift rntloltl Awamtion.

> 0' Sob- tMi

;o 47.(29)

1wI valid 4ith oonstant 6 We *az then put the di'ffezeztial eq~tioin in

the forla

/L
(C- ' +Zi9 1
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We now construct the grid of points

in the region and substitute for equation (30) a difrIrence equation

U=L( i)a in this~ grid., ?or this-piarpose we adjoin to each grid point,

the following adjacent points-, The ponsFand Po1f which acme

~rouiP, by~i~mp aoee ki and-a ,repo~tivsty,.i~n the direction

vr the t -azie; ,and the points P9 , .~P which lie In -the ism plane

aSOP parallel to the "(X )-plino; see fig. U." These points fom an

. aodmhl elemnt with the. oznrpints ~ P, PI fp )

lo eamh gdd point T. Vhb±ah iisimiade G'vg r*'.paoe the meacon

diff*.Rnti4a 00ioniex~ QGcrzmn In (30) by d'ifforence quo*4eflti

Fig. .

Iabout in the oataheCfal elemnent in the :fbllowing way. 4



We replace

by UI14

U +144 t +-A A . (U 9919

W ,e stbatiti~te orr0emponiling differencae quaoteznts AA the o~t$Iedrml
-;me~Am t for th fi rst d f e e t ml q o i n s o c r i g n 3 * g v

thi coefficients in the 44ifhreno iequetion the -valiue Wbiob an taken

'by the coefficients of the Ciffeieitflai eqp1tiaR at tbie poz Pi

stU Ut tm itia lp anes tu ma# d eiwuu~.t

ftmti~omRýva111e -ae -prmar'1bsi~so-that -they aonVe m-tovw~r thi TreuOZ!±bed4II Int~e~alum ~ wih weine tofhe, uh-vdh IVdt hmiCeA'2Ing

difference quzotients u to tbeý Amriuxth* 0dr-1447 om lbe4ý theimop
-1tao sa4M 'ti Ik uhould i,m tz'la oorpge tovtxd the Coo~spn&Ui

-The, solution of the differience//.sation L (Ui) mq0 at 'a point is.

d ~Iuivly determinej Uy. the values.on thtva bottou planes of-the diter.".

mination pyramid passing thzough it.
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For the 'proof of convergence we form over all elementary octahedrons

of a determination pyramid the sum

and tansform it by means of the. i4~ntitiez (7),'(8)- In this way there

arises ofie spatial OMm Altiplied by;~ whin' -m+sr~ei tetn

difference quotients, and also L, sum mdultiplied by', over the lateral

fdouble plmnes~ In which appear the squares of ali difference quotients of

the type I(W 0.!U 1 4 itKj P 4.t ul ( O~ ocoux'ng on and I*Weu.s this

daOule planes;1 their coefficients are greater than a find povitivt

cons.tant. aauu of, (9, it -s wehoose Mo~eover suff ic ioutly Oftil. ai

Lof tim- to xpae-sesh widths.

From baro-e si ~aproceed In tho $ame £uiwitdtan 11 57# k#a~
can prov that te. solution of our. difference -equatiift. coumeps t@V13!&

the solutiln of 'the differential, equatioia.

V (Received on September 1, 1927)


